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ABSTRACT
To aid users in choice-making, explainable recommendation mod-
els seek to provide not only accurate recommendations but also
accompanying explanations that help to make sense of those rec-
ommendations. Most of the previous approaches rely on evaluative
explanations, assessing the quality of an individual item along some
aspects of interest to the user. In this work, we are interested in
comparative explanations, the less studied problem of assessing a
recommended item in comparison to another reference item.

In particular, we propose to anchor reference items on the pre-
viously adopted items in a user’s history. Not only do we aim at
providing comparative explanations involving such items, but we
also formulate comparative constraints involving aspect-level com-
parisons between the target item and the reference items. The
framework allows us to incorporate these constraints and integrate
them with recommendation objectives involving both types of sub-
jective and objective aspect-level quality assumptions. Experiments
on public datasets of several product categories showcase the ef-
ficacies of our methodology as compared to baselines at attaining
better recommendation accuracies and intuitive explanations.

CCS CONCEPTS
• Information systems→Recommender systems;Collabora-
tive filtering.
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1 INTRODUCTION
In this digital era, most of our activities and interactions are tak-
ing place online. This trend is accelerating further with recent
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events. The online marketplaces offer us choices that are orders-of-
magnitude greater, necessitating the increasing use of recommender
systems to help us navigate these choices. There is almost nary a
site online that does not offer recommendation feature to its users.

To many, searching for products and making choices are often
learning experiences in their own right. Many of the products we
encounter in the search process are new to us. Therefore, while
recommendations may help to focus our attention and narrow our
search, these recommendations may not always immediately make
sense to us. This is where explanations would go a long way in
persuading users to understand and accept the recommendations.

Propitiously, in recent past, we begin to see a build-up of in-
terest in explainable recommendations [34, 38]. The core of many
models lies in anchoring the explanations on product aspects that
have been mentioned by users in online reviews. For instance, a
pioneering work EFM [38] produces an explanation in the form of
“You might be interested in [aspect], on which this product performs
[well/poorly].”. In turn, another well-known model MTER [34] pro-
duces an explanation in the form of “Its [aspect] is [opinion phrase].”.
In these explanation templates, variables enclosed in square brack-
ets are to be substituted with the relevant aspects, sentiments, or
opinion phrases. Note how such explanations are evaluative by
nature, assessing the quality of a single product in and of itself.

Comparative Explanation.We posit that users are inherently
interested in choice-making, gaining information from relative com-
parisons. To this extent, binary sentiments are of insufficient preci-
sion in differentiating items (many of which may be equally ‘posi-
tive’, or ‘negative’). Neither is it easy to compare opinion phrases
such as ‘light’ vs. ’portable’, or ‘affordable’ vs. ’value for money’.
Thus, we seek a comparative explanation for a recommended item,
with respect to another reference item, as illustrated below.

[recommended item] is better at [an aspect] than
[reference item], but worse at [another aspect].

One question is which items should serve as reference to a rec-
ommended item. There are several reasonable options. One could
be a comparable substitute under consideration, e.g., a buyer of
washing machines may wish to know how other washers in the
market compare to the recommended one. Another could be a pre-
viously purchased item by the target user. Our focus is on the latter.
For one reason, this is a comparison that the target user would
likely find understandable, given her familiarity with the previous
item. For another, the user may find it more actionable if it confers
a perception of gain in improving upon one’s past purchase. This
would also characteristically be a personalized form of explanation,
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as it relates directly to the target user’s past actions. The disadvan-
tage lies in the classic cold-start scenario when the user has not
previously purchased a similar product, in which case we could
always fall back to an evaluative explanation for such scenarios.

Comparative Constraints. If we presuppose that a user gener-
ally tries to make better decisions over time by improving upon past
purchases, then hypothetically the stereotypical users may already
exhibit this behavior in their past purchase histories, at least to
a certain extent. In other words, an explainable recommendation
model that expects this behavior when learning the model has the
potential of producing recommendations that are more reflective
of user behavior and hopefully more accurate as well.

Therefore, we formulate comparative constraints relating histor-
ical purchases that can be incorporated into explainable recommen-
dation models. Borrowing a terminology from the skyline literature
[2], we say that a product y dominates another product x , if the
former is at least as good as the latter in all aspects and better in
at least one aspect. Now, it may not necessarily be the case that a
later purchase y must always dominate a previous purchase x . On
the other hand, it may be reasonable to assume that most of the
time, y is not dominated by x . For example, while a user may go
on to buy a cheaper model after finding that she does not need all
the bells and whistles that come with a previously purchased more
expensive model, it bears pointing out that the very fact that the
later purchase is cheaper means that it is still superior in one way
(i.e., value) and thus is not dominated by the earlier purchase.

In the explainable recommendation literature [34, 38], product as-
pects are often extracted from review text. When a later adoption is
observed to be better at some aspect than a previous adoption by the
same user, we formulate an aspect-level comparative constraint that
seeks to preserve the same comparison in the modeled latent aspect
sentiments. Moreover, our approach is to model these aspect-level
comparative constraints as a framework, allowing specific instanti-
ations built on two lines of explainable recommendation models,
namely one that allows subjective aspect-level quality (user-specific)
and another that accommodates objective aspect-level quality.

Contributions. First, we propose user’s history of adoptions
as basis for comparison for recommended items. Second, in Sec-
tion 4, we describe a framework called Comparative Explainable
Recommendation or ComparER, which incorporates comparative
constraints into explainable recommendation models. Third, in Sec-
tion 6, we conduct experiments on publicly available datasets of
several product categories that show the efficacy of comparative
constraints for top-k recommendations. In Section 7, we illustrate
the comparative explanations through case study and user study.

2 PRODUCT RATINGS OVER TIME
To gain insights in developing the comparative constraints using
previous items as references, we conduct an empirical analysis of
ratings that users give to products from a broad spectrum of cate-
gories over time. For this purpose, we use the public1 Amazon.com
dataset [9]. In this dataset, only the act of rating, rather than pur-
chase, is visible. Note also that this discussion is of motivational
rather than conclusive nature, and a fuller investigation of this
hypothesis at aspect and category-levels will be done in Section 6.

1http://jmcauley.ucsd.edu/data/amazon/
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Figure 1: Average rating of products launched over time
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Figure 2: Average rating of products since launch time

Different Products Launched Across Time. First, we con-
sider whether more recently launched products tend to induce
greater ‘consumer satisfaction’, which may imply that generally
speaking products tend to improve over time (with better features,
ease of use, etc.). For this analysis, we associate every product with
two attributes. One is its ‘estimated quality’ (i.e., average rating).
The other is its ‘estimated launch time’ (i.e., time of its first review).
These are but approximations, which may suffice as our intent is to
study general trends involving many products.

We group all products ‘launched’ in the same month, and tracks
their average ‘quality’ over time in Figure 1. It is evident from the
line graph that, minor fluctuations notwithstanding, the general
trend is that products launched later tend to have higher average
rating over its ‘lifetime’. The dotted line provides the best-fitting
line, which has a positive gradient. The basis for this analysis is a
large number of reviews, as shown by the histogram in Figure 1.
The rating count initially goes up, probably as the popularity of
Amazon goes up. The later downturn is because products ‘launched’
in recent years have not reached their full potentials in terms of
rating counts by the cut-off date in the dataset. Even the lowest bar
of the histogram (July 2014) has been supported by 258K ratings.

Same Product Over Time. Second, we now group all the prod-
ucts together, but slice the set of ratings by the distance between
the launch time and the time in which the rating is assigned. This
may give us a sense of how the quality of a product is generally
perceived over time. The line graph in Figure 2 shows that the
tendency is for the average rating to be the highest at launch and
thereafter to fall over time. There could be various explanations,
such as excitement about the product winds down, product flaws
are discovered over time, etc. However, taking Figure 2 and Fig-
ure 1 together may suggest that satisfaction with earlier launched
products decreases as other newly launched products appear.
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Table 1: Main Notations

U, P, A, O set of all users, products, aspects, and opinions
L sentiment lexicon
S set of all purchased sequences

Si ∈ S a purchased sequence by user i
N the highest overall rating in the target domain
Q user-product-aspect quality tensor

X , Q ′ user-aspect attention matrix and product-aspect quality matrix
λx , λy coefficients weigh the relative important of aspects vs. ratings
σ logistic function
λd trade-off parameter of ComparER
α trade-off between rating and aspect scores for ranking

Figure 2 also shows a histogram of products still ‘actively’ re-
ceiving ratings months from their launch. For many products, their
‘lifetime’ are rather short, as many are no longer active after one
month. A cynical view is ratings decrease because inactive products
are ‘better’ than long-surviving products. What we find more per-
suasive is that those products are inactive because they have been
replaced by newer products, while others still survive as alternatives
to the newer products but suffer from weaker perception.

Observations from these empirical analyses are consistent, at
least not in conflict, with our hypothesis of a previously purchased
product as reference. Capitalizing on these insights, we instantiate
concrete formulations to build explainable recommendation models
that support comparative explanations at aspect level.

3 NOTATION AND FORMULATION
The notations are summarized in Table 1. P denotes the universal
set of products of a specific category, e.g., washing machines. The
set of users is denoted U. A user i ∈ U assigns to a product j ∈ P

a rating ri j ∈ R+. Each user is also associated with Si , which is a
temporally ordered list of products rated/adopted by user i .

Let A be the set of aspects, and O be the set of opinion phrases.
In the review accompanying a rating ri j , the user may express
several opinion phrases with regards to aspects. From such ex-
pressions, we extract (a,o, ρ) tuples, each representing sentiment
polarity ρ ∈ {−1,+1} for aspect a ∈ A with opinion phrase o ∈ O.
A sentence may support a tuple. Tuples across sentences within a re-
view are to be aggregated to get user’s aspect-level sentiments (see
Section 4). The collection of unique tuples extracted from reviews
make up a contextual sentiment lexicon L. To build L, we lever-
age opinion lexicon from [12] and aspect lexicon from Microsoft
Concept Graph2 (see Section 6).

The problem can thus be stated as follows.We receive as input the
set of usersU, products P, ratings R, sequences S, and contextual
sentiment lexicon L. From these inputs, we seek a model that is
capable of producing top-k personalized ranking list of products
as well as an explanation associated with each recommended item.
The explanation will express the tradeoff in aspects between the
recommended item and a reference item (previously purchased).

4 METHODOLOGY
We propose Comparative Explainable Recommendation (ComparER).
The gist is to transform observed aspect-level quality into a set of
comparative constraints relating an item and previous items in the
user’s adoption history. In particular, we describe two variants of

2https://concept.research.microsoft.com/

this approach owing to the two modes of expressing aspect-level
quality common to the explainable recommendation literature. In
one mode, aspect-level quality is subjective, i.e., the perception of
a product for an aspect may vary across users. In another mode,
aspect-level quality is objective. It is expressed for each product.

4.1 Subjective Aspect-Level Quality
Aspect-Level Quality. Let Q be a tensor of dimensionality |U| ×

|P|×|A|.qi jk ∈ Q represents the quality score of aspect k ∈ A that
user i ∈ U assigns to product j ∈ P. However, the explicit quality
scores given by users are usually unavailable. Instead, they can be
estimated based on sentiments extracted from textual reviews [34].

Let si jk be the aggregate (e.g., sum) of the sentiment polarity
scores (the aforementioned ρ) for aspect k extracted from user i’s
review of item j . The higher it is, the more positive i assesses j on k .
For instance, [34] defines a non-linear mapping from si jk to qi jk .

qi jk =

{
0, if aspect k is not mentioned when i reviews j
1 + N−1

1+e−si jk , otherwise
(1)

where N is the highest rating score in the target domain. Realis-
tically, Q is only partially observed. The crux of the model lies in
predicting the missing values in Q .

Comparative Constraint. Let us take two products rated by
user i , namely j and j ′ where j ≺ j ′, i.e., j is earlier in the se-
quence of adoption than j ′. We hypothesize that for many such
pairs, j ′ is not dominated by j . In other words, ∀k ∈ A,qi jk ≤ qi j′k
or ∃k ∈ A,qi jk < qi j′k . Note that this is not necessarily true all
the time, we study such ‘violations’ in Section 6. However, it holds
frequently enough that we would like to impose a constraint to
their corresponding predictions q̂i jk and q̂i j′k (to be learnt by the
prediction model) to preserve instances where qi jk < qi j′k holds.

To this end, we favor the aspect quality comparisons where the
more recently adopted product achieves superiority in some aspect.
In particular, we formulate the following loss for comparative as-
pects, where we try to maximize the difference in the aspect quality
scores between the more recent product and the earlier product.

LComparERsub = −
∑
i ∈U

∑
(j≺j′)∈Si

∑
{k |qi jk<qi j′k }

lnσ (q̂i j′k − q̂i jk )

(2)
Joint Model. We seek to minimize our proposed comparative

constraint loss jointly with the recommendation objective. With-
out loss of generality, we adopt the recommendation objective of
MTER [34]. It models user-product-aspect interactions with ratings
jointly as a tensorG ∈ R

|U |×|P |×( |A |+1)
+ . The rating ri j is appended

as an additional aspect to the tensor G, i.e., дi j( |A |+1) = ri j . And
the aspect-level quality scores are дi j(: |A |) = qi j(: |A |).

G is decomposed by minimizing the following loss function3:

LMTER = | |Ĝ−G | |−λb
∑
i∈U

∑
{(i, j,l )|ri j >ril }

lnσ (д̂i j (|A|+1)−д̂il (|A|+1)) (3)

3The full objective also includes decomposition of user-aspect-opinion and item-aspect-
opinion tensors. For simplicity, we only show the decomposition of user-item-aspect
tensor G as the other tensors are for predicting opinion phrases. In our experiment,
we use the full version of the objective function.
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The first component | |Ĝ −G | | is due to Tucker decomposition [15]
on the observed elements of the tensor, where Ĝ is the tensor re-
construction of G. The second component is due to applying the
Bayesian Personalized Ranking (BPR) principle [29] to the rating
component of the tensor to preserve the triples (i, j, l) where we
observe the rating ri j to be higher than ril . λb is a trade off param-
eter to balance the two types of loss. Towards joint modeling, we
integrate the loss due to the comparative constraints as follows:

L = LMTER + λdLComparERsub (4)

where λd controls the contribution of comparative constraints.
Parameter Learning. Let Θ be the set of all learning parame-

ters4. We optimize for LComparERsub by minimizing the following
− lnσ (q̂i j′k − q̂i jk ). The corresponding gradient is:

−
∇

∇Θ
lnσ (q̂i j′k − q̂i jk ) ∝

eq̂i jk−q̂i j′k

1 + eq̂i jk−q̂i j′k
∇

∇Θ
(q̂i j′k − q̂i jk ) (5)

The complexity of enumerating comparable product pairs for each
sequence is O(|Si |2). Iterating through all aspects requires O(|A|).
Thus, given the set of training sequences Strain with an average
sequence length of S̄ , the overall complexity of ComparER on a
training epoch is O(|Strain | · |S̄ |

2 · |A|). Nevertheless, in practice,
the average sequence length5 and the number of aspects in each
product are relatively small.

Top-k Recommendation.With the learnt parameters, we com-
pute the ranking score for a recommended item j to user i as follows:

RankingScorei j = α ·

∑
k ∈Ci j q̂i jk

|Ci j |
+ (1 − α) · r̂i j (6)

Here, r̂i j = д̂i j( |A |+1) is the predicted rating for the item, which is
weighted by (1−α).We also consider the effects of aspect sentiments.
Let |Ci j | be the specified number of top aspects to be considered in
the prediction. Correspondingly, Ci j ⊆ A is the set of top aspects
of interest by user i on item j in terms of highest q̂i jk . We then
average these scores in Ci j and incorporate it with weight α . This
combination is useful as we will investigate in Section 6.

Explanation. For each item j ′ in the top-k recommendation
list, we provide an explanation with respect to a reference item
from the user i’s previous adoption history. The choice of which
item j from the user’s history is to be used as reference is left as an
application device. Possible heuristics could be most recent, similar,
substitutable, equally-priced, etc. It could also be user-specified. The
former aspect k would be one where q̂i jk < q̂i j′k , whereas the latter
aspect k ′ would be one where q̂i jk ′ > q̂i j′k ′ (if any). When there
are more than one choice of aspect, we select randomly, though
other selection criteria could also apply (e.g., highest difference).

4.2 Objective Aspect-Level Quality
Aspect-Level Quality. The second mode of expressing aspect-
level quality is through a quality matrix Q ′ ∈ R

|P |×|A |
+ , which is

user-independent as proposed by [38]. Each element q′jk ∈ Q ′ may

4For simplicity of presentation, we hide all regularization from the notation. In our
experiments, we use L2-norm for every factor as regularization.
5If efficiency is a concern for very long sequences, optimization strategies such as
using windows or subsequences may be applicable.

be obtained from sentiments extracted from reviews as follows:

q′jk =


0, if aspect k is not discussed in reviews of j
1 + N−1

1+e
−s′jk

, otherwise (7)

where s ′jk is the aggregate (e.g., sum) of sentiment-scores of aspect
k across the reviews of product j (by any reviewer).

Comparative Constraint. Let us take two products, namely
j and j ′ where ∃i ∈ U, (j ≺ j ′) ∈ Si , i.e., j ′ is later in the se-
quence of adoption than j for at least one user. We would like to
impose a constraint to their corresponding predictions q̂′jk and
q̂′j′k (to be learnt by the prediction model) to preserve instances
where q′jk < q′j′k holds. However, not all such constraints would
be equal. Some are supported by many more sequences (users) than
others. Let c j j′ be the count of users that support the (j ≺ j ′) se-
quence. Intuitively, the greater c j j′ is, the more weight it should
carry in the optimization objective. Thus we apply a scaling factor
of 1 + ln(c j j′), which satisfies this objective. In particular,

LComparERob j = −
∑

(j, j′)∈∪i∈USi

(1+ ln(c j j′ ))
∑

{k |q′jk <q
′
j′k }

lnσ (q̂′j′k − q̂′jk )

(8)
where q′jk and q′j′k are the product aspect-level quality score of
a previously bought product j and a later bought product j ′.

Joint Model. To integrate the proposed comparative constraint
with a compatible recommendation objective, we extend the rec-
ommendation objective of EFM [38]. In addition to product-aspect
quality matrix, it models user-aspect attention matrix X by project-
ing the frequency tik of an aspect k mentioned by a user i .

xik =

{
0, if aspect k is not mentioned by i
1 + (N − 1)

(
2

1+e−tik − 1
)
, otherwise

(9)

X and Q ′ are reconstructed along with ratings R by multi-matrix
factorization with shared factors, minimizing the following:

LEFM = | |UPT − R | |2 + λx | |η1ψ
T − X | |2 + λy | |η2ψ

T −Q ′ | |2 (10)

where U = [η1ϕ1] and P = [η2ϕ2] are users’ and products’ latent
factors respectively. Each is the concatenation of aspect-based factor
(η1,η2) influenced by X ,Q ′ and hidden factors (ϕ1,ϕ2) influenced
by ratings.ψ are the latent factors of aspects. Coefficients λx and λy
weigh the relative importance of aspects vs. ratings.

We integrate the loss functions as follows:

L = LEFM + λdLComparERob j (11)

Parameter Learning.We optimize for LComparERob j where the
corresponding gradient for a comparative pair (j, j ′) is:

− (1 + ln(c j j′ ))
∑

{k |q′j′k >q
′
jk }

∇

∇Θ
lnσ (q̂′j′k − q̂′jk )

∝ (1 + ln(c j j′ ))
∑

{k |q′j′k >q
′
jk }

e q̂
′
jk−q̂′ j′k

1 + e q̂
′
jk−q̂′ j′k

∇

∇Θ
(q̂′j′k − q̂′jk )

(12)

Because aspect score comparisons are done at product level,
instead of user level, the complexity is smaller than before:O(|U| ×

|S̄ |2) for computing the counts c j j′ andO(|P|2 · |A|) for parameter
learning (in practice the number of compared pairs are much less
than |P |2 due to data sparsity).
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Ranking Score. The ranking score is measured as follows:

RankingScorei j = α ·

∑
k ∈Ci x̂ik q̂

′
jk

|Ci |N
+ (1 − α) · r̂i j (13)

where α is the control factor,Ci of a specified size is the set of most-
cared aspects of user ui in terms of x̂ik values. Other details such
as top-k recommendations and explanation are similar to those
described earlier in Section 4.1.

5 RELATEDWORK
ExplainableRecommendation.Other than EFM [38],MTER [34]
mentioned earlier, other approaches to explainable recommenda-
tions include [1, 31, 38] based on matrix factorization, [5, 34] based
on tensor factorization, [24, 36] combining matrix factorization
with topic modeling. Others enhance explainable models using
graphs [10] or trees [8]. In virtually all cases, explainability comes
from pairing ratings with reviews, knowledge bases, etc.

[26] analyses the role of attributes in product quality compar-
isons. [4] studies a related form of comparative explanation, called
tradeoff-oriented explanation, which is validated to be useful via
a user study. However, their work is aimed at comparing product
clusters. Moreover, they focus on validating the interface, rather
than on the underlying explainable recommendation model. [33]
studies multivariate rankings, how to rank multiple aspects jointly.
Their focus is not on the explanation perspective that sets us apart.

Other than template-based explanation, there are alternative
explanations. [11] works with content-based collaborative filtering.
[23, 31, 35] explains recommendation by learning explainable rules.
[6, 30] interprets from learnt topics, whereas [28] uses social net-
work. [3, 24] suggests helpful reviews. Others attempt to provide
recommendations along with the generated review. [18] conditions
its review generation on latent factors, [22] extends on review tex-
tual features, whereas [7] conditions on aspects. These works are
not comparable, as they focus on a different type of explanation.

Another line of research decouples the recommendation explana-
tion from explainable recommendation, focusing only on generating
explanation for a given recommendation [17, 27].

Comparison Mining. There are various problems related to
comparisons. One is determining which of two products is better
overall [19, 39]. For instance, it could be based on how two named
entities are compared within the same sentence [32]. Another line
is in finding substitute and/or complementary products. [25] relies
on discovering topics in product reviews and networks of products
derived from browsing and co-purchasing logs. Yet another related
problem is competitor mining [13, 16, 37], finding which products
are most likely to be comparable to a target product. Our work is
orthogonal to these directions. Rather than focusing on the selection
of which products to compare to, we assume they are given and
focus on finding the appropriate recommendation explanation.

Skyline Queries.While we borrow the concept of when a prod-
uct dominates another from the literature on skyline queries, the
connection is incidental. Skyline computation identifies a set of
points that are not dominated by any other point. It is frequently
expressed as a query processing issue, optimizing for the computa-
tional efficiency in which such points can be retrieved [14, 20]. A
similar concept is applied to recommendation [21], recommending

Table 2: Data Statistics

Dataset #User #Product #Rating #Aspect #Opinion
Electronic 45,225 57,873 759,016 445 4,232

Toy 4,188 10,512 70,944 428 2,559
Clothing 5,200 17,895 68,262 422 1,748
Cellphone 3,216 7,807 44,492 423 2,032
Music 1,763 3,383 40,675 416 3,065

a skyline group that are not dominated by any other group. It is not
our interest to find such a skyline set. Instead, we focus on improv-
ing explainable recommendations using comparative constraints
as well as on exploring comparative forms of explanations.

6 EXPERIMENT
As experimental objectives, we investigate whether incorporating
the comparative constraints leads to improved recommendation
accuracy. We also consider the resulting comparative explanations
through case study and user study. Comparisons between methods
are tested with one-tailed paired-sample Student’s t-test at 0.05
level. Computational efficiency is not the focus of this paper. Most
recommendation algorithms are learnt offline. While ranking score
computation is online, its computational time is practically identical
across methods being compared. Experiments were run on machine
with Intel Xeon E5-2650v4 2.20 GHz CPU and 256GB RAM.

6.1 Setup
Datasets. For experiments, we rely on the publicly available Ama-
zon datasets from the same source as the one used in Section 2
for preliminary empirical analysis. However, due to the compara-
tive nature of the hypothesis, the modeling and learning are more
appropriately conducted for distinct categories separately, as one
probably does not compare a toy and a phone. Therefore, we con-
duct five experiments with the following categories respectively:
Electronics (Electronic), Toys and Games (Toy), Clothing (Cloth-
ing), Cell Phones and Accessories (Cellphone), Digital Music (Music).
Table 2 summarizes basic statistics of the datasets. For statistical
sufficiency, we retain users with at least 10 ratings. Each user’s
rating sequence is then split into train, validation, test with ratio
0.64 : 0.16 : 0.2 chronologically. Unknown products are excluded
from validation and test sets, a uniform practice across all methods.

To extract aspects and opinions from reviews, we adopt the
frequency-based approach of [8]. Using Microsoft Concepts as as-
pects, we retrieve top-2000 most frequently mentioned in reviews,
sort them by their correlations with the ratings, and keep only top-
500 (after filtering unseen aspects in validation/testing, the number
comes to 400+). We select opinions associated with these aspects
to construct (a,o, ρ) tuples, using the opinion lexicon from [12].

Methods and Baselines. There are two instantiations of our
method, namely: ComparERob j (see Section 4.2) and ComparERsub
(see Section 4.1). We note that while in Section 4 we describe joint
models that incorporate comparative constraints with a base rec-
ommendation objective, our approach can be seen as a framework
as these comparative constraints could potentially be applicable
to other base recommendation objectives6. Therefore, the most
appropriate choice of baselines would be the base recommendation
objectives that we use, specifically EFM [38] for ComparERob j and
6To maintain focus, we keep such explorations to future work.
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Figure 3: AUCperformance of EFMandMTERwhile varying
number of latent factors l on Electronic data

Table 3: Performance of EFM and ComparERob j

Dataset Model AUC Recall@k% NDCG@k%
1 5 10 1 5 10

Electronic EFM 0.717 0.107 0.277 0.393 0.022 0.044 0.057
ComparERob j 0.759§ 0.176§ 0.362§ 0.474§ 0.038§ 0.062§ 0.074§

Toy EFM 0.580 0.030 0.106 0.189 0.009 0.021 0.033
ComparERob j 0.656§ 0.042§ 0.157§ 0.268§ 0.014§ 0.033§ 0.049§

Clothing EFM 0.579 0.036 0.114 0.189 0.009 0.020 0.028
ComparERob j 0.611§ 0.059§ 0.154§ 0.233§ 0.016§ 0.030§ 0.039§

Cellphone EFM 0.652 0.045 0.162 0.266 0.012 0.032 0.046
ComparERob j 0.701§ 0.069§ 0.214§ 0.334§ 0.022§ 0.046§ 0.062§

Music EFM 0.641 0.040 0.158 0.257 0.019 0.046 0.064
ComparERob j 0.678§ 0.060§ 0.200§ 0.320§ 0.029§ 0.061§ 0.083§

§ denotes statistically significant improvements. Highest values are in bold

MTER [34] for ComparERsub , for these would directly evaluate
whether the comparative constraints produce a positive effect.

Measures. Each method produces a ranked list of recommended
items. The length of each list is relative to corresponding dataset
size, and is expressed as the top-k% of items in terms of the ranking
score, for various k ∈ {1, 5, 10}. As evaluation measures, we employ
multiple standard ranking metrics, such as Area Under the ROC
Curve (AUC), Recall at k percentage (Recall@k%), and Normalized
Discount Cumulative Gain at k percentage (NDCG@k%). For these
metrics, a higher value indicates better performance.

Learning Details. We use grid search to find the optimal hy-
perparameters for the baselines EFM and MTER. For ComparER,
we then apply the same hyperparameters as the coresponding
base model for parity. We fix λx = λy = 1 (as in the author
implementation in Librec), and search for the latent dimensions
l ∈ {8, 16, 32, 64, 128}. We further tune the coefficient λd in the
candidate set of {0.01, 0.1, 1, 10, 100}. For each method, the setting
with the best AUC on validation set is selected.

Figure 3 illustrates the performance of the base models while
varying the latent dimensionality l in terms of AUC on the largest
Electronic data (we observe similar trends on other datasets as
well). EFM achieves better AUC with greater dimensionality l . The
opposite is true for MTER, yet it requires much more time for
training. So we set l = 128 for EFM and l = 8 for MTER as default,
which we apply to our methods as well. To speed up training,
we load pretrained weights from the respective base model and
continue training with the added constraints. For parity purpose,
we further verify that as the base models have indeed converged,
further continuing their training does not add any value.

6.2 Ranking Performance
First, we investigate whether adding the comparative constraints
improve the ranking performance of the base models. Table 3 shows

Table 4: Performance of MTER and ComparERsub

Dataset Model AUC Recall@k% NDCG@k%
1 5 10 1 5 10

Electronic MTER 0.759 0.157 0.337 0.448 0.035 0.058 0.070
ComparERsub 0.797§ 0.185§ 0.398§ 0.520§ 0.041§ 0.069§ 0.083§

Toy MTER 0.727 0.066 0.217 0.359 0.020 0.044 0.064
ComparERsub 0.747§ 0.093§ 0.278§ 0.422§ 0.029§ 0.059§ 0.079§

Clothing MTER 0.671 0.069 0.189 0.287 0.017 0.034 0.045
ComparERsub 0.680§ 0.071 0.200§ 0.297§ 0.017 0.035§ 0.046§

Cellphone MTER 0.757 0.113 0.296 0.425 0.036 0.066 0.084
ComparERsub 0.787§ 0.129§ 0.337§ 0.474§ 0.043§ 0.077§ 0.095§

Music MTER 0.844 0.128 0.380 0.548 0.057 0.114 0.146
ComparERsub 0.848§ 0.130 0.391§ 0.564§ 0.059 0.119§ 0.151§

§ denotes statistically significant improvements. Highest values are in bold

Table 5: Constraint violations analysis. Counting function
V (·) takes all pairs and the aspect quality weights as input
and reports number of pairs violating the constraint

Dataset #Pairs V (Q ′)
V (Q ′)

#Pairs V (Q )
V (Q )

#Pairs
Electronic 4,692,596 57,668 1.23% 30,867 0.66%

Toy 479,786 11,602 2.42% 10,476 2.18%
Clothing 258,357 14,081 5.45% 13,226 5.11%
Cellphone 219,851 8,024 3.65% 5,751 2.61%
Music 509,302 6,515 1.28% 2,481 0.49%
Total 6,159,892 97,890 1.59% 62,801 1.02%

the results for ComparERob j and its baseline EFM. We observe that
on all metrics, across all datasets, ComparERob j improves upon
the ranking performance of EFM consistently and in a statistically
significant manner. We attribute this to the contribution of the com-
parative constraints based on historical reference. In turn, Table 4
shows the ranking performance of ComparERsub and its baseline
MTER. It substantially echoes the observations above that supports
the outperformance of ComparERsub over its baseline. Much of the
outperformance are also statistically significant, save for a couple
of pockets (e.g., Recall@1% on the smaller datasets Clothing and
Music) where the differences still exist but in a smaller way.

6.3 Comparative Constraints
Constraint Violation. Earlier, we motivate the comparative con-
straints with the hypothesis whereby it is unlikely that an item j ′

that a user rates later is ‘dominated’ by another item j rated earlier.
Seeking some measure of validation, we now analyze the number
of occurrences in which this hypothesis is violated. To define viola-
tion, we use the ground-truth matrix Q ′ for objective aspect-level
quality. For subjective aspect-level quality, a matrix is obtained
from flattening Q by averaging the values across users.

Table 5 shows the total number pairs involving two products, one
of which is rated later than the other by a user. Suppose thatV (·) is
a counting function that takes in all these pairs and the aspect qual-
ity weights as input, and reports the number of violating pairs. We
express these numbers both as absolute count as well as a percent-
age of the total number of pairs. Interestingly, the stated hypothesis
seems to hold for the vast majority of pairs. The violations amount
to a single-digit percentage value, which across all datasets come
to less than 2% of all pairs.

Effect of Constraint Coefficient λd . We incorporate Com-
parER constraints with a coefficient weight λd to learn model
parameters that would preserve the constraint for as many pairs
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Table 6: Effect of Constraint Coefficient λd on ComparERob j
Dataset λd AUC Recall@k% NDCG@k%

V (Q̂ ′)1 5 10 1 5 10

Electronic

0.01 0.755 0.182 0.357 0.463 0.042 0.065 0.077 91,669
0.1 0.759 0.176 0.362 0.474 0.038 0.062 0.074 75,528
1 0.749 0.151 0.348 0.459 0.029 0.055 0.067 45,982
10 0.735 0.103 0.296 0.412 0.021 0.046 0.059 48,401

Toy

0.01 0.647 0.047 0.160 0.259 0.015 0.033 0.047 10,772
0.1 0.656 0.042 0.157 0.268 0.014 0.033 0.049 10,111
1 0.649 0.033 0.156 0.269 0.011 0.032 0.047 9,919
10 0.624 0.036 0.139 0.233 0.013 0.030 0.043 9,474

Clothing

0.01 0.606 0.053 0.151 0.229 0.015 0.028 0.038 14,053
0.1 0.611 0.059 0.154 0.233 0.016 0.030 0.039 12,043
1 0.612 0.054 0.153 0.237 0.015 0.028 0.038 12,294
10 0.605 0.051 0.150 0.237 0.012 0.026 0.036 11,505

Cellphone

0.01 0.697 0.072 0.218 0.331 0.023 0.047 0.062 7,698
0.1 0.701 0.069 0.214 0.334 0.022 0.046 0.062 6,739
1 0.698 0.053 0.202 0.320 0.017 0.041 0.057 6,442
10 0.689 0.044 0.169 0.294 0.014 0.034 0.051 5,598

Music

0.01 0.672 0.056 0.195 0.309 0.025 0.057 0.078 5,634
0.1 0.678 0.060 0.200 0.320 0.029 0.061 0.083 5,074
1 0.675 0.044 0.179 0.308 0.023 0.054 0.078 3,948
10 0.648 0.036 0.142 0.248 0.016 0.041 0.060 3,875

Better values are in bold
Table 7: Effects of Constraint Coefficient λd on ComparERsub

Dataset λd AUC Recall@k% NDCG@k%
V (Q̂ )1 5 10 1 5 10

Electronic

0.1 0.759 0.150 0.331 0.445 0.033 0.056 0.069 2,029,774
1 0.774 0.163 0.356 0.476 0.036 0.061 0.074 2,138,013
10 0.794 0.180 0.388 0.512 0.040 0.067 0.081 1,062,211
100 0.797 0.185 0.398 0.520 0.041 0.069 0.083 814,568

Toy

0.1 0.725 0.065 0.214 0.357 0.019 0.043 0.063 246,307
1 0.733 0.072 0.232 0.373 0.022 0.048 0.068 229,863
10 0.747 0.093 0.278 0.422 0.029 0.059 0.079 106,607
100 0.747 0.082 0.263 0.410 0.024 0.054 0.074 70,228

Clothing

0.1 0.666 0.069 0.187 0.287 0.017 0.034 0.046 131,862
1 0.670 0.069 0.192 0.293 0.017 0.034 0.046 130,323
10 0.680 0.071 0.200 0.297 0.017 0.035 0.046 82,484
100 0.678 0.065 0.190 0.297 0.016 0.033 0.046 61,998

Cellphone

0.1 0.751 0.112 0.282 0.409 0.036 0.064 0.081 117,560
1 0.762 0.129 0.313 0.432 0.042 0.072 0.089 109,877
10 0.783 0.156 0.359 0.477 0.053 0.086 0.102 53,091
100 0.787 0.129 0.337 0.474 0.043 0.077 0.095 22,119

Music

0.1 0.840 0.127 0.381 0.554 0.059 0.117 0.149 257,273
1 0.844 0.129 0.386 0.560 0.060 0.118 0.151 249,079
10 0.848 0.130 0.391 0.564 0.059 0.119 0.151 101,376
100 0.833 0.126 0.367 0.531 0.058 0.113 0.144 124,574

Better values are in bold

as possible. Table 6 tabulates the ranking performance and viola-
tion count of ComparERob j at various values of λd . When λd is
zero, we are optimizing only for the recommendation objective.
Interestingly, as we increase λd , the number of violations (last col-
umn) generally decreases, which means the imposed constraints
are taking effect. The ranking performance also initially improves,
though with too high λd it may hurt ranking performance as it
downweighs the recommendation objective. Table 7 presents the
results for ComparERsub with largely the same conclusion as well.

To see how ComparER retains the original violations as in the
base models, not only in terms of the violation counts, but also
whether it is identifying the ‘correct’ violations, Table 8 and Ta-
ble 9 show that ComparER achieves lower number of constraint
violations than the baselines that do not optimize for this directly.

To further clarify the degree of agreement between the estimated
scores obtained after training (Q̂ ′ or Q̂) and the ground-truth scores

Table 8: Constraint Violations: EFM vs. ComparERob j
Dataset Model V (Q̂ ′) Recall Precision F-Measure

Electronic EFM 92,491 0.810 0.505 0.622
ComparERob j 75,528 0.875 0.668 0.758

Toy EFM 17,799 0.888 0.579 0.701
ComparERob j 10,111 0.857 0.983 0.916

Clothing EFM 21,718 0.870 0.564 0.684
ComparERob j 12,294 0.872 0.999 0.931

Cellphone EFM 11,523 0.878 0.611 0.721
ComparERob j 6,739 0.825 0.982 0.897

Music EFM 10,090 0.838 0.541 0.658
ComparERob j 5,074 0.750 0.962 0.843

Better values are in bold

Table 9: Constraint Violations: MTER vs. ComparERsub
Dataset Model V (Q̂ ) Recall Precision F-Measure

Electronic MTER 2,033,981 0.976 0.015 0.029
ComparERsub 814,568 0.867 0.033 0.063

Toy MTER 229,456 0.971 0.044 0.085
ComparERsub 106,607 0.892 0.088 0.160

Clothing MTER 123,797 0.944 0.101 0.182
ComparERsub 82,484 0.877 0.141 0.242

Cellphone MTER 99,014 0.946 0.055 0.104
ComparERsub 22,119 0.648 0.168 0.267

Music MTER 198,437 0.800 0.010 0.020
ComparERsub 101,376 0.541 0.013 0.026

Better values are in bold

Table 10: Aspects in Ranking Score: α and #Top Aspects

Dataset ComparERob j ComparERsub
α #Top Aspects α #Top Aspects

Electronic 0.8 300 0.4 200
Toy 0.7 20 0.5 all aspects

Clothing 0.8 10 0.3 10
Cellphone 0.6 10 0.3 300
Music 0.7 20 0.3 400

in training data (Q ′ or Q), we evaluate the Recall = V (Q ′)∩V (Q̂ ′)

V (Q ′)
,

Precision = V (Q ′)∩V (Q̂ ′)

V (Q̂ ′)
, F-Measure (similar formula applies to Q).

Given the large number constraint violations by the base models,
perhaps it is not surprising that they have higher recall. However,
much of the recovered violations may not be correct, as reflected by
their lower precision as compared to ComparER. When we take the
recall and precision together, their harmonic mean or F-measure
shows that ComparER performs better in recovering the violations.

6.4 Incorporating Aspects in Ranking Scores
To verify that the aspects do participate meaningfully in the recom-
mendation, we tune different values α in the range of [0, 1] with
step size 0.1 and the number of top aspects in a candidate set of
{10, 20, 30, 50, 100, 200, 300, 400, all aspects}. Table 10 shows the set-
tingwith the best performance on various datasets for ComparERsub
and ComparERob j . Evidently, for all datasets, we have α > 0, which
means that aspects are indeed helpful. The number of aspects to take
into account in the prediction is dataset- and method-dependent.

7 COMPARATIVE EXPLANATION
One of the objectives is to explain a recommended item by way
of comparison to a reference item (another item previously rated
or purchased by the user). In this section, we show a couple of
examples of such explanations and discuss a user study.
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Previously bought product: B00AI5V3CQ
The OontZ Angle Ultra Portable Wireless 
Bluetooth Speaker - Better Sound, Better 
Volume, Incredible Online Price - The Perfect 
Speaker to take everywhere with you this 
summer (Blue)

User: A15N56ZCTHRB73

Explanation:
EFM: You might be interested in sound, on which this product performs well. 

You might be interested in purpose, on which this product performs poorly.
ComparER𝒐𝒃𝒋: Product B00F6AVFK8 is better at quality than B00AI5V3CQ. But worse at sound.

Recommended product: B00F6AVFK8 
The Oontz XL - Cambridge SoundWorks Most 
Powerful Portable, Wireless, Bluetooth Speaker

Figure 4: Example Explanations by EFM and ComparERob j

Previously bought product: B000S5Q9CA
Motorola Vehicle Power Adapter micro-USB 
Rapid Rate Charger

User: ACO3U8DT64IV6

Explanation:
MTER: Its phone is mistakenly. Its case is mistakenly.
ComparER𝒔𝒖𝒃: Product B00GN6QZ0Y is better at design than B000S5Q9CA. But worse at quality.

Recommended product: B00GN6QZ0Y 
Mpow 3.1Amps 15.5W Dual Port Backlight 
USB Car Charger for iPhone 5s 5c 5 4s 4 iPad 
1 2 3 5 Air Mini Samsung Galaxy S4 S3 S2 
Galaxy Note 3 2 HTC One X V S and More 
(White and Blue)

Figure 5: Example Explanations by MTER and ComparERsub

7.1 Case Study
For the first example in Figure 4, we recommend a bluetooth speaker
Oontz XL to the user. The explanation generated by the baseline
EFM for this product is evaluative, speaking of the aspects sound
which is positive and purpose which is negative. It offers no hint
as for how this product may compare to any other. A comparative
explanation relies on a reference item, which we propose to be a
previously rated product. In this particular case, one of the previ-
ously rated products in the category was another bluetooth speaker
Oontz Angle, which is a smaller model than the recommended item.
Using our approach ComparERob j , we identify quality as an aspect
for which the recommended item is better, and sound as an aspect
for which it is worse than the reference item. Since the user would
have been familiar with the reference item (previously rated), this
may offer more information than a standalone explanation.

For a second example involving ComparERsub and its baseline
MTER, Figure 5 shows the case of a user being recommended a car
charger of Mpow brand. MTER’s explanation is based on opinion
phrases. In this case, it identifies two pertinent aspects: phone and
case and the opinion phrase mistakenly. In contrast, our approach
is to present a reference item, which is a previously purchased
car charger of Motorola brand. The explanation by ComparERsub
alludes to the recommended item being better at design (it is more
compact and cableless) but worse at quality (it is of a less well-
known brand than the reference item).

Table 11: Analysis of User Study

+ reference product Method Score Method Score
No EFM (original) 2.12 MTER (original) 2.06
Yes EFM (enhanced) 2.24 MTER (enhanced) 2.05
Yes ComparERob j 3.29§ ComparERsub 3.06§

§p-value < 0.01. Highest value are in bold

7.2 User Study
We conduct a user study with 25 examples (5 product recommen-
dations from each category). Since the focus in this section is on
the explanation, rather than the relative accuracy of methods, we
consider recommended items from users’ test data, with reference
items from their training data. We generate explanation for the
recommended product by ComparER and its base model for every
example. As seen in the case studies, the original versions of EFM
and MTER generate explanation for only the recommended prod-
uct. To give them the benefit of comparison, we further include
enhanced versions of these baselines by showing explanations for
the reference products as well, as in our approach.

We then conduct independent surveys, each containing 25 ex-
amples of different recommendation explanations generated from
different models (selected randomly and presented blindly). The
study was completed by 20 annotators, who are neither the authors
nor having any knowledge of the objective of the study. We ask
every annotator to rate their opinion on the generated explanation
with the following question (adopted from [34]):

Does the explanation help you know more about the
recommended product?

Each explanation is seen by at least 3 different people. A participant
chooses from five-point Likert scale, from 1 (strongly disagree) to 5
(strongly agree). The average scores are reported in Table 11. Both
ComparER variants received significantly better scores than the
original and the enhanced versions of the base methods.

While we are aware of general limitations of user studies, we
presume that similar limitations apply to both our approach and
the baselines. The consistency in which users find favor with the
proposed explanations provide some evidence for the promising
nature of ComparER at providing comparative explanations.

8 CONCLUSION
We approach explainable recommendation from the perspective
where an explanation compares the recommended item with a ref-
erence item (previously adopted product). The proposed ComparER
incorporates comparative constraints into explainable recommen-
dation models. Experiments on datasets of five categories show that
ComparER enhances the performance of ranking prediction.

There are several avenues for future work to build on this promis-
ing line of research: exploring comparisons to other definitions of
reference items such as substitutes, incorporating the comparative
constraints into other recommendation models/objectives, testing
multi-way comparisons to multiple products simultaneously, etc.
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